Rigorous parameter reconstruction for differential equations with noisy data
نویسندگان
چکیده
We present a method that – given a data set, a finitely parametrized system of ordinary differential equations (ODEs), and a search space of parameters – discards portions of the search space that are inconsistent with the model ODE and data. The method is completely rigorous as it is based on validated integration of the vector field. As a consequence, no consistent parameters can be lost during the pruning phase. For data sets with moderate levels of noise, this yields a good reconstruction of the underlying parameters. Several examples are included to illustrate the merits of the method. © 2008 Elsevier Ltd. All rights reserved.
منابع مشابه
A New Modification of the Reconstruction of Variational Iteration Method for Solving Multi-order Fractional Differential Equations
Fractional calculus has been used to model the physical and engineering processes that have found to be best described by fractional differential equations. For that reason, we need a reliable and efficient technique for the solution of fractional differential equations. The aim of this paper is to present an analytical approximation solution for linear and nonlinear multi-order fractional diff...
متن کاملA new numerical scheme for solving systems of integro-differential equations
This paper has been devoted to apply the Reconstruction of Variational Iteration Method (RVIM) to handle the systems of integro-differential equations. RVIM has been induced with Laplace transform from the variational iteration method (VIM) which was developed from the Inokuti method. Actually, RVIM overcome to shortcoming of VIM method to determine the Lagrange multiplier. So that, RVIM method...
متن کاملBayesian estimation of distributed phenomena using discretized representations of partial differential equations
This paper addresses a systematic method for the reconstruction and the prediction of a distributed phenomenon characterized by partial differential equations, which is monitored by a sensor network. In the first step, the infinite-dimensional partial differential equation, i.e. distributed-parameter system, is spatially and temporally decomposed leading to a finite-dimensional state space form...
متن کاملA distinct numerical approach for the solution of some kind of initial value problem involving nonlinear q-fractional differential equations
The fractional calculus deals with the generalization of integration and differentiation of integer order to those ones of any order. The q-fractional differential equation usually describe the physical process imposed on the time scale set Tq. In this paper, we first propose a difference formula for discretizing the fractional q-derivative of Caputo type with order and scale index . We es...
متن کاملA Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts
In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Automatica
دوره 44 شماره
صفحات -
تاریخ انتشار 2008